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1. htrodiae&ion 

In recent years, mu& work has been devoted to an apparently new mathematical strnc- 
tnre, the structure of a quantum group, and its application to various fields of physics 
(statistical mechanics, conformal quantum field theory, etc) Indeed, the structure of 
a quancnm group ;or algebra) is connected with those of Becke algebra and quasi- 
triaugviar Eopf algebra and certainly plays an important role in non-commutative 
gametry (Drinfef'd 1985, jiinbo 1985, Woronowicz 1987). Loosely speakiiig, the 
structure of a quantum algebra corresponds to a deformation which can be character- 
ized by a deformation parameter p, ail arbitrary complex number in the most general 
case. 

There is no universal significance in the paremeter g and the physicist is tempted 
to consider it as a phenomenological parameter: something like a curvature constant, 
to be adjusted to the experimental data. The limiting situation p = 1 corresponds to 
the flat case and gives back the results azorded by (ordinary) quantum mechanics For 
example; when p goes to 1, the quantum algebra suq(2), which defines a ?-analogue of 
angular momentum, reduces to the Lie algebra su(2) of (ordinary) angular momentum 
The algebra su(2) is used from atoms to quarks wlth some reasonable snccess and. 
therefore, the replacement of sti(2) by su,(S) with g near to 1 should be appropriate 
for the description of fine structure effects. In the framework of this philosophy, we 
may expect to obtain a fine strucaure of the hydrogen atom from a deformation of its 
non-relativistic spectrum. 

It seems interesting to investigate <-analogies of dynamical systems in view of their 
potentist use as refined units for modelling physicd systems, with the case q - I = 0 
corresponding to already known eifects and the case g - 1 2 0 to new effects (such as, 
for inslance, spectrum shift and spectrum splitting) In this vein, the q-analogue oh the 
harmonic osci!lator, as derived a~10n.g ot iers  by Macfarlane{~lyO89) Biedenhcrn (1989), 
Sun and Fu (1939) and Kulish and Reshetikhin (ISSS), represents a first important 
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st.,p; further, the q-analogues of various coherent states introduced recently (Quesne 
1991, Katriei and Solomon 1991) might be interesting in physical applications. 

It is the purpose of the present work to introduce a q-analogue of another very 
simple dynamical system, that is the three-dimensional hydrogen atom. We shall 
deal here with the (quantum mechanical) discrete spectrum of the hydrogen atom 
in R3 and shall obtain in section 2 its q-analogue by passing from the dynamical 
invariance algebra so(4) = m(3) fB su(2) of the ordmary hydrogen atom system to its 
q-analogue su,(2) 69 su,(2). In section 3, an alternative spectrum will b- derived from 
the Kustaanheimo-Stiefei (KS) transformation (Kustaanheimo and Stiefel 1965) and 
applied to a phenomenological derivation of the 2s-2p fine structure splitting. We 
shall close this article with some conclusions in section 4 about the non-unicity of 
q-analogues and the reievance of the quantum algebra so,(& 2) for the Wigner-Racah 
algehza of SW,(2) 

2. q-analogue of the Ilau’ii eqnaiions 

Since we want to exmine sug(2) fBsuq(2), we review, in a non-standard presentation, 
some basic facts about the quantum algebra suq(2). Let E = {Urn) . Zj E W , m  = 
-3( l ) j j  be the Hilbert space of the representation theory of the (ordinary) Lie group 
SU(2). We define the operators a+, a$, a- and a? acting on E by the relationships 

M Kibler and T NLgagadr 

.ii;m) = vmj - 1, iii 7 1‘ 

a + i l j m ) = J ~ \ j + $ , m s + ) .  

In equsttlon (I), we use the notation [z] 3 [.I, where 

[.I, = - ( 2 )  

(1) 
2 2 )  

,f - 9-. 

P - 4-1 
is the q-analosue of the (real) number I; q is taken as a complex nnmb%r whlch is not 
a root of unity. In the limting situation g = 1, equation (1) gives back the defining 
reletionships introduced by Schwinger (1952) in his theory of angular momentum (see 
also Ihibler and Grenet (1980) and Momura (1990)). Some trivial properties (matrm 
elements, tine-reversal behaviour, adjointness relationships, etc) for the operators a+, 
U $ ,  a- and a? can be derived from the initial relationship (1). 

By introducing 

a i = j + n  n 2 = j - m  l j m ) ~ l j + , , j - r n ) = l n , , n z )  (3) 

we immediately obtain 

G+lni?l~) = - I ,%)  U : b 1 % )  = &-i+ llb, 4 I ,%) 
- 

(4) 

a-~n*nJ  = Jr.231”l>n, - 1) .?In1,.2) = I /Gz i ln1 ,n2+  0. 
Consequently, the sets {a,,.$} and {.-,a?} are two commntiug sets of q-bosons. 
Indeed, these q-bosons satisfy the relationships 

.,a: - q-ia$a+ = q“ a-0: ’ - q -1  a-a- + = qNz 
( 6 )  

7. 
.. 

[ G + , u - j -  = [ u $ & j -  = [ u + , a ~ ~ -  = Ia+,a-i- = 0 
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where N, and Nz are the (usual) number operators defined by 

NiIninz) = n i b 1 4  ffzbinz) = n3Ini"z). (6) 

Equations (4)-(6) show that each of the sets !.+,a$} and {u-,a?] is a ret of q- 
bosons as introduced independently by many authors including Macfarlane (2989), 
Biedenharn (1989) and Snn and Fu (1989). 

We now introduce the following three operators 

J- = aca+ J3 = 4(IVl - Arz) J+ = aza-. (7) 

The action of J - ,  Jz and J+ on the space E is given by 

We thus recover the Jimbo repiesentation of the quantum group §U,(2). The com- 
mutation relationships of the operators J- , J3 and J+ easily foilow 'from (8) As a 
matter of fact, we have 

[JS, JJ- = *J* [J+, J-1- = [2J,1. is) 

In equation (9), the abbreviation [A] s [AIg stands for the 9-analogue 

of the operator A acting on E. The relationships (9) characterize the quantum algebra 

A basic ingedient of .U,('?), of central importance for what follows, is its Casimir 
sue(% 

operator J2. We shail take it in the form 

5 3  = f ( J + J -  4- J -J+)+ f [ 2 ] [ J 3 ] 2  (11) 

so that che eigenvafues of J z  on E are k1b + 4 with Zj in M. The form taken here 
for J 2  difFers from the one usually encountered in the literature; indeed, equation (11) 
ensures that the eigenvaiues of J 2  are merely J(2 + 1) in the !imiting case p = I, a 
resulk which turns out 10 be essential in tLe framework of the philosophy sketched in 
the introduction. 

We are in a position to q-deform the Pauli equations for the thiee-diens!ond 
hydrogen atom in the case of the discrete spectrum. &om the orbital angular mo- 
mentum L and the Laplace-RungeLene-Pauli vector iW for the ordinary hydrogen 
atom syscem, we define the operators A and B through 

A = 4 ( E + N )  B = i ( L - - N )  N =  L L M  (12) 

where E is the energy ( E  .: 0) and p the reduced mass of the atom. We know that 
{A, : i = l ,2 ,3}  and :Bi : i = 1,2,3j  are the generaton of WO groups, say ASU(2) 
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and BSU(Z), both of them being of the SU(2) type. In addition, ihe Casimir operators 
AZ and B2 of the Lie algebras QSU(~) and bsu(2) satisfy the equations (see Pauli 1926) 

M Kzbler end T Ne'gndi 

A2 - Ba = 0 E(!iA2 + 2B2 + B2)  = -$&e4 (13) 

valid for a hydrogen-like atom with a nuclear charge Ze. A possible way to define a 
g-deformed hydrogen atom is to deform the Lie groups ASU(2j and SSU(2). Then, 
the Pauli equations (13) have to be extended to the quantum zlgebra osuq(2)@bsu,(2) 
'This deformation produces a q-anaiogue of the hydrogen atom, the energy E of which 
is given by 

Equations (14) and (15) follow from (13) where we have introduced the eigenvalues of 
AZ and B 2 ,  in correct units, of the Casimtr operators ofasuq(2) and bsuq(2). 

The quantity Eo is the energy ofthe ground state of the p-deformed hydrogen atom. 
'The p-deformed hydrogen atom defined by (14) thus has the same gro-nnd energy level 
aa ihc ordinary hydrogen atom which corresponds i o  the iiniiimg siiuaiion q = 1. 
Furthermore, its (discrete) spectrum exhihits the same degeneracy as that of the 
oidinaiy hydrogen atom. The only difference between the cases 4 = 1 and q f 1 arises 
in the position of the excited leveis. Of course, the q-deformed spectrum reduces to 
that of the ordinat? hydrogen atom when q goesto 1; the pxincipal quantum number 
n is then given 3y n = 2 j  + 1 

3. q-minlope m d  KS tra~xsforenation 

In the case q r I, we know how EQ I.WS from the hydrogen atom in Ws to  ZSI isotropic 
harmonic oscillator in E4 or W2 @ lR'. by applyicg the KS transformatLon (Boiteux 
1972, I<ibler and Nhgadi 1983a, b, 1984, Kibler ei a1 1986). The reader may consult 
Knstaanheimo and Stiefel (1965), Cornish (1984), Lambert and Kihler (1988), and 
Hage-Hasan and Kibler (1991) for a description of this transformation, which is 
indeed a particular BurwiEe transformation. The KS transformation can be used to 
define a q-deformed hydrogen alom. This may he achieved along the following lines: 
(i) apply the KS transformation to the ordinary hydrogen atom in Elp3 in order to 
ohlain an isotropic harmonic oscillator in W4; (it) transpose the latter oscillatcr into 
its q-analogue; and (iii) invoke the 'inverse' KS transformation io obtain a q-2nalogue 
of the hydrogen atom. ' 

Ai a result, we obtain a p-deformed hydrogen atom characterized by the drsuete 
spectrum 

~~ ~~ 
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In the limiting case 9 = 1, the principal quantum number n is connected to the 
oscillatorquantumnumbersn, ( i =  1 , 2 , 3 , 4 ) b y n , f n z + n 3 + n 4 + 2 =  2n. Then, the 
q-deformed spectrum (15) give back the discrete spectrum of the ordinary hydrogen 
atom wken q goes to 1 Here again, the p-deformed hydrogen atom has the same 
gromd energy level as the ordtnary hydrogen atom. However, we now pass from 
the discrete spectrum of the ordinary hydrogen atom to the oue of this alternative 
9-deformed hydrogen atom by means of a level sphttmg for the excited levels. 

As an iUnstrakion, the level corresponding to the principal quantum number la = 2 
when q = i is spiic inco two ieveis when q # i. in fact, we have &e two energy ieveis 

16 4 
([2] + 2)2 Eo. E,m = ([Z] + [3] i 3)2 Eo E2000 = 

VJe thus have a splitting of the n = 2 non-relativistic level, a situation which is 
reminiscent of the fine structure splitting afiorded by the Dirac theory of the hydrogen 
atom. By using the osciiiator basis {il.,,,,,,,, j descdbed by Kibler et el (l986), i t  
can be proved that the wavefunctions Y.", corresponding to the limiting case q = 1 
are 

for (the doublet) E,,oo, and 

(19) 
qXl = ~ ~ * l o ~ o  - QjO,,, + i(@loo, - 
*n-1 = N ~ % J l O  - @0101- i~"1 - ~ 0 1 1 0 ~ ~  

f ~ r  {the dwhler.) Eiiao: E ~ ~ a $ i o n  (17) i!!uztrate the fact that, &;hen going f r ~ m  ; z 1 
to q # 1, the spectrum is not outy shifted but aim split (except for the ground enexgy 
level). From (IT), vie obtain the splitting -* 

Aq =El:,, -E,,,, = $,Eo(¶ - for q - 1 0. (20) 

We note that by taking q = 1004, we get Ag = 0.33 em-*. The value obtained for 
A$ bas the order ofmqnitude of the (2p-sP,13) - ( Z S ' § ~ ~ ~ ,  2p2PF,/,) experimental 
Ane structure splitting. 

4. Glosillg remarks 

Th? application of qusntnm groups to a large class of physical pcoblems requires the 
q-deformation of the usual dynamcai systems. In this direction, the g-deformation 
o€ the onedimensional harmonic oscillator (Macfarlane 1989, Biedenhapn 1989j has 
been a decisive step. The %-analogues of lhe hydrogen atom in R3 introduced in this 
work represent a fur&er important step Part, of this work might be extended to the 
hydzogen atom in E' by means of lhe Aurwirz transformekion associated with the 
EopE fibration on sphetes S' .+ S4 of compacE fibre S3 (Lambert 2nd Kibien 1088, 
'Lc&r U L L S V d l l  Bull rl!"lrr LUUL,. v.."..- T1^ ---- ^ _ J  V L L I - -  *ne.*\ 
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The hydrogen atom in W3 is a basic dynamical system in classical an? q u a n t a  
mechanics in the case q = 1. (Ordinary quantum mechanics can be thought to corre- 
spond to the limiting case q = 1.) This system is maximally super-integrable (Evans 
1990, Kihler and Winternita 1990) with rich dynamical invariance and non-invariance 
algebras. It would be interesting to investigate invariance and non-invariance alge- 
bras of the 9-deformed hydrogen atom m d  to see the branching rules when going 
from 9 = 1 (ordinary quantum mechanics) to q f 1 (9-deformed quantum mechanics). 
§imilar remarks apply to the isotropic harmonic oscillator in R3, another maximally 
super-integrable system. 

There are several ways to define a q-analogue of the hydrogen atom. We have 
been concerned in this article with two of them. There are other solutlons connected 
with pairs of non-commuting p-bosons. The two q-deformed hydrogen atoms defined 
in sections 3 and 4 by their discrete spectra are different although having the same 
(ordinary) quar?tum limit (corresponding io q = 1) This constitutes in €act a general 
problem we face when dealing with y-deformed objects (cf, for example, the caSe of 
cohrent slates introduced by Kazriel and Solomon (1991)). We currently do not have 
a simple correspondence principle for associating a (unique) q-analogue to a given 
mathematical or physical object. The use of a clearly dehed, via the notion of a 
q-derivative, q-deiormed Schrcdinger equation shoiild lead to some standardization of 
q-deformed objects. 

Among the two q-deformed hydrogen atoms discussed previously, the one obtained 
via the KS transformation is certainly the most interesting. It leads to a spectrum 
which is shifted and split with respect to the ordinary quantum lmit  corresponding 
to q z 1. firthermore, the 2s-2p Dirac splitting can be reproduced by adjusting the 
value of q and this yieids a value close to 1. The latter result should not be taken 
too aepiously but i t  constitutes a model of tbe 2s - 2p splitting without rclativistic 
quantum mechanics. 

We dose this section with a remark about the q-bosonization (7) of the spherical 
SIlgUhP momentum { J - ,  J3, J+)  leading to su,(2). We may also define an hyperbolic 
angular momentum l K - , K 3 ,  K+) by 

with the property 

and thus span the quantum algebra su,(l, 1). There are four other bilinear forms of 
the 9-bosons a+, U$, U- and a!' which can be formed in addition to the Js and the 
K S ,  ?3 fOll0~7S 
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The operators ks are clearly shift operstors for the quantum numbers j and m It 
can be proved that the set {k:, k?, K ,  /z;} span, together with the sets {J- ,  J3, J + )  
and {K-,  IC3, K+}, a quantum algebra which may be identlfied to so(3,Z) sp(4,W) 
when q goes to 1. The quantum algebra so,(3,2) might be usefd for studying the 
Wigner-Raeah algebra of the group §U,@) as was done in the c a e  p = 1 (Kibler and 
Grenet 1980). 
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