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Abetracs, The discrete spectrum of a g-analogue of the hydrogen atom 15 obtained
from 2 deformation of the Pauli equarions. As an alternative, the spectrum 1s derived
frova o deformation of the four-dimensional oscillator ansmg in the application of the
Kustzanheimo-Stiefel iransformation to the hydrogen atom. A model of the 2s—2p
Dirac shift is proposed in the rontext of g-deformations.

1. Inirodection

In recent years, muck work has been devoted to an apparently new mathematical struc-
ture, the structure of 3 quantwm group, and iis application to various fields of physics
(statissical mechanics, conformal quanium field theory, ete} Indeed, the structure of
& quantn group ior algebra) iz connected with those of Hecke algebra and quasi-
triangolar Hopf algebra and certainly plays an important role in non-cominutative
geometry (Drinfel’d 1985, Jimbo 1985, Worenowics 1987). Loosely spesking, the
structure of 2 guanium slgebra corresponds to a deformation which can be character-
ized by a deformation parameter ¢, an arbitrary complex number in the most general
case.

There iz no universal significance m the parameter ¢ and the physicist is tempted
to consider it as a phenomenological parameter, something like 2 curvature constant,
to be adjusted to the experimental dala. The limitng situation ¢ = 1 corresponds to
the flat case and gives back the results afforded by {ordinary) quantum mechanics For
example, when ¢ goes to 1, the quantum algebra sn ¢(2), which defines a g-analogue of
angulay momenturn, reduces to the Lie algebra su{2) of (ordinary) angular momentum
The algebra su(2) is used from atoms to quarks with some reasonable suceess and.
therefore, the replacement of su(2) by su, (2} with g near to 1 should be appropriate
for the description of fine structura effects. In the framework of this philosophy, we
may expect to obtain a fine structurs of the hiydrogen atom from a deformation of its
non-relativistic spectrum.

1t seems interesting to investigate g-analogues of dynamical systems in view of their
potential use as refined units for modelling physical systems, with the case ¢ -1 =10
corresponding to already known effects and the case g — I =  to new effects (such as,
for instance, spectrum shifs and spectrum splitting) In this vein, the g-analogue of the
harmonic oscillator, as derived among others by Macfarlans {1989), Biedenharn (1989),
Sun and Fu {1089) and Kulish and Reshetikhin (1989), represents a first important
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5284 M Kibler and T Négads

st.p; forther, the g-analogues of various coherent states introduced recently {Quesne
1991, Katriel and Solomon 1991) might be interesting in physical applications.

It is the purpose of the present work to introduce a g-analogue of ancther very
simple dynamical system, that is the three-dimensional hydrogen atom. We shall
deal here with the (quantum mechanicai) discrete specirurr of the hydregen atom
in R® and shall obtamn in section 2 its g-analogue by passing from the dynamical
invariance algebra so(4) = su(2) & su(2) of the ordinary hydrogen atom system to its
g-znalogue su {2} @su, (2). In section 3, an alternative spectrum will be derived from
the Kustaanheimo-Stietel (KS) transiormation (Kustaanheimo and Stiefel 1965} and
applied to a phenomenoclogical derivation of the 2s-2p fine structure splitting. We
shall close this article with some conclusions 1 section 4 zbout the non-unicity of
g-analogues and the relevance of ihe quantum algebra so, (3, 2) for the Wigner-Racah
algebra of 5V (2) ’

%. g-snalogue of the Paull equations

Since we want fo exsinine suq{fZ) @ su,(2), we review, in & non-standard presentation,
some basic facts about the quantum algebra su (2). Let £ = {|jm) - 2j € N,m =
—3(1)7} be the Hilbert space of the represeniation theory of the {ordinary) Lie group

SU(2). We define the operators a, af, a_ and a¥ acting on £ by the relationships

acljm) = Gl - §mF )
M
aflim) =V xm+illj+3m=4
In equation (1), we use the notation [2] = [2], where
g% —g~"
(el = —— (@)

g—g?
is the g-anslogue of the (real) munber z; ¢ 1s taken as a complex number which is not
a root of unity. In the linnting situation ¢ = 1, equation (1) gives back the defining
relationships miroduced by Schwinger {195%) in his theory of angular momentuin (see
also Kibler and Grenet {1980) and Nomura (1890)). Some tiivial properties (matrix
elements, time-reversal behaviour, adjointness relationships, ste) for the operators a,
ai, a_ and af can be derived from the mitial relationship (1).

By introducing

m=j+m mp=j-m  |jm)=|jtm,j-m)=|ng,n) (3)

we immediately oblain
Gy lryng) = flmllng — 1, 25) aflnyng) = \/[711 + Uiy + 1L,ny)
a_jnyng) = \flo]lng, ny — 1) aFlng ng) = /[y + Ylny, g + 1),

Consequently, the sets {a,,<]} and {a_,a¥} are two commuting scts of g-bosons.
Indeed, these g-bosons satisly the relstionships

R
a.a] —g ay

(4

_ 1 N
a, =¢" a_at —qg laTa_ =¢™

lay, el = [ai,af]__ =fa,,at]l =¥, 0 j_ =0
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where &, and N, are the (usual} number operators defined by
Nilnyng) = nylnyng) Nylnyng) = nolnyng). (6)
Equations (4)~(6) show that each of the sets {a,,al} and {a_,al} is a set of g-
bosons as introduced independently by many authors including Macfariane (1989),
Biedenharn (1289) and Sun and Fu (1830).
We now mtroduce the following thres operators

J_=ata, Jg = 3(Ny — Ny} Jy=efa_. (N

The action of J_, J; and J,_ on the space £ is given by

Tslimy = mijm) Ty =i Fmli 2 m+1]l5,m 1) (8)

We thus recover the Jimbo representation of the guantum group SU,(2). The com-
mutation relationships of the operators J_, J; and J easily follow from (8} Asa
matter of fact, we have

U Jelo =%Jg Vil =24 (%)
In equation (9), the abbreviation [4] = [4], stends for the g-analogue

A ~A
_I ¢
=225 (10)

of the operator 4 acting on £. The relationships {9) characterize the quantum algebra
su,{2}.
4
A basic ingredient of su (2}, of central importance for what follows, is its Casimir
operator JZ. We shall take it in the form

TP = LI T+ T 1)+ AR {11)

so that the eigenvalues of J? on £ are [j]fj + 1] with 2j in N. The form taken here
for J? differs from the one usnally encountered in the litezrature; indeed, equation (11)
ensurss that the eigenvalues of J? are merely j(7 4 1) in the limiting case ¢ = 1, 2
result which turns out Lo be essential in the framework of the philosophy sketched in
the introduction.

We are in a position to g-deform the Pauli equations for the three-dimensionai
hydrogen atom in the cage of the discrete spectrum. From the orbital angular mo-
mentum I and the Laplace-Runge-Lenz~Pauli vector A4 for the ordinary hydrogen
atom system, we define the operators 4 and 3 through

A=HE4+N) B=iL-N) N:iI%M (12

A

where E g the energy (E < () and 2 the reduced mess of the atom. We know that
{£4,73=1,2,3} and {B; : i = 1,2,3} are the generators of ywo groups, say ASU(Z)

o
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and BSU(2), both of them being of the SU{2) type. In addition, the Casimir operators
A? and B? of the Lie algebras esu(2) and bsu(2) satisfy the equations (see Pauli 1926)

A*—B=0  E(ZA*+ 2B+ K%)= —Luz%et (13}

valid for a hydrogen-like atom with a nuclear charge Ze. A possible way to define a
g-deformed hydrogen atom is to deform the Lie groups ASU(2} and BSU(2). Then,
the Pauli equaiions (13) have to be extended to the quantum zigebra asu,(2)bsu,(2)
This deformation produces a g-anaiogue of the hydrogen atom, the energy £ of which
is given by

1
BB =By 2
PC T e YEN (4)
with
1u2%et

Equations {14) and (15} follow from (13) where we have introduced the eigenvalues of
A? and B?, in correct units, of the Casiimr operators of asu (2) and bsu,(2).

The quantity E, is the energy of the ground state of the ¢-deformed hydrogen atom.
The & ~deformed hydrogen atom defined by (14) thus has the same ground energy level
as the ordinary hydrogen atoin which corfesponds to the limiting situation ¢ = 1. -
Furthermore, its (discrete) spectrum exhibits the same degeneracy as that of the
_ ordinary hydrogen atom. The only difference between the ceses ¢ = 1 and ¢ # 1 ariges
in the position of the excited levels. Of course, the g-deformed specirum reduces to
that of the ordinary hydrogen atomn when g goes to 1; the principal quantum number
nisthen given by n =325+ 1

3. g-analogue and K$ transformation

In the case ¢ = 1, we know how to pass from the hydrogen atom in R? to zn 1sotropic
harmonic osecillator in B? or R2 @ B2 by applying the XS transformation (Boiteux
1672, Kibler and Négadi 1983a, b, 1984, Kibler e 2l 1986). The reader may consult
Kustaanheimo and Stiefel { 1965}, Cornish (1984}, Lambert and Kibler (1938), aud
Hage Hagsan apd Kibler (1991) for a description of this transformation, which is
indead = parbicular Hurwitz transformation. The KS transformation can be used to
defins & g-deformed hvdrogen aiom. This may be achieved along the following lines:
(i) apply the KS transformation to the ordinary hydrogen atom in R® in order to
cbtain an isotropic harmonic oscillator in R% (i1) transpose the latter oscillator into
its g-analogue; and (iii) inveke the ‘inverze’ K8 tranuformamen to obtain a g-analogue
of the kydrogen atom. ° - —

As 2 resuli, we obiain a g-deformed hydrogen atom characterized by the discrete
spectium

15
E=E =— _F : - (16a)
ninasn 20
et V(’h“z”anq)
4
A T ArY ot R — T3 S T T R Y f10Ly
vimmgngngy = p (nd+ M+ 1) o €M {i=1,239) {164
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In the limiting case ¢ = I, the principal quantum numbsr » is connected to the
oscillator quantum numbers n, (i = 1,2,3,4) by »; +ny +n3-+n,+2 = 2n. Then, the
g-deformed spectrum (18) gives back the discrete spectrum of the ordinary hydrogen
atom when ¢ goes to 1 Here again, the g-deformed hydrogen atom has the same
ground energy level as the ordinary hydrogen atom. However, we now pass from
the discrete spectrum of the ordinary hydrogen atom to the one of this alternative
g-deformed hydrogen atom by means of a level sphiting for the excited levels.
As an illusiration, the level corresponding to the principal quantum purnber n = 2
when ¢ = 1 is spiit into two levels when g # 1. In fact, we have the iwo energy levels
16 4
Esp00 = WED K00 = W‘En- (17)
We thus have a splitting of the n = 2 non-relativisiic level, a sifuahion which is
reminiscent of the fine structure splitting afforded by the Dirac theory of the hydrogen
atom. By using the oscillator basis {®,, .., . } descnibed by Kibler et ol (1986), it
can be proved that the wavefunctions ¥, = correspondmng to the Hmiting case g = 1
are

) ¥anp = N (D900 + Ponao + Poozo + Poooa)

5 . _ (18)
Fy16 = N{@3000 + Boz00 — Poczs ~ Booez)
for (the doublet) E,pq, and
W11 = N[ @010 ~ Poror + H{@1001 — Eo110)] (19)
Fg1-1 = N[@1010 ~ o101 — ¥®1001 — o0}
for {the donbles) E;, ... Equation (17) illusirates the fact that, when goingfromg =1
ta g # 1, the spectrum is not only shifted but also split {except. for the ground energy
level). From {17), we chtain the splitting -
AL = Byagq — Eggeo = S Eo(g — 1) for g~ 1=0. (20) ~

We note that by taking ¢ = 1 004, we get A, =033 cm™:. The value obtained for
&, has the ozd'er‘ oij magnitude of the (2p %P, 2 — (228, Jo 2p B, J2) experimental
fine structure splitting.

4. Closing remarks

The application of quantura groups to a large class of physical problems requires the
g-deformation of the usual dynamical systems. In this direction, the g-deformaiion
of the one-dimensional karmonic oscillator (Macfarlane 1989, Biedenharn 1989) has
been & decisive step. The g-analogues of the hydrogen atom in R® introduced in this
work represent & furthor important step  Part of this work might be extended to the
hydrogen atom in R® by means of the Hurwitz transformation asscciated with the
Hopf fibration on spheres 57 — 5 of compace fbre $% (Lambert and Kibler 1088, -

Fhmcan WMo a3 T e B
Lrept fiashall S0 DADIET ALl
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The hydrogen atom in R® is a basic dynamical system in classical and quantum
mechanics in the cage g = 1. (Ordinary quantum mechanics can be thought to corre-
spond to the limiting case ¢ = 1.) This system is maximally super-integrable (Evans
1990, Kibler and Winternitz 1990} with rich dynamical invariance and non-invariance
algebras. It would be interesting to investigate invariance and non-invariance alge-
bras of the g-deformed hydrogen atom and to see the branching rules when going
from ¢ = 1 {ordinary quanturn mechanics) to g 3# 1 (g-deformed quantum rechanics).
Similar remarks apply to the isotropic harmonic cscillator in R®, another maximally
super-integrable system.

There are several ways to define a g-analogue of the hydrogen atom. We have
been concerned in this article with two of them. There are other solusions connected
with pairs of non-commuting g-boscns. The two g-deformed hydrogen atems defined
in seciions § and 4 by their discrete specira are different although having the same
{ordinary) quanium limit (corzesponding to ¢ = 1) This constitutes in fact a general
problem we face when dealing with g-deformed objects {cf, for example, the case of
coherent states introduced by Katriel and Solomon {1991)). We currently do not have
a simple correspondence principls for associating a (unique) g-analogue to a given
mathematical or physical object. The use of a clearly defined, via the notion of a
g-derivative, ¢-deformed Schrédinger equation should lead to some standardization of
g-deformed objects.

Among the two g-deformed hydrogen atoms discussed previously, the one obtained
via the K8 transformation is certainly the most interesting. It leads to a spectrum
which is shifted and split with respect to the ordinary quantum lunit corresponding
ta ¢ = 1. Furthermore, the 25-2p Dirac splitting can be reproduced by adjusting the
value of ¢ and this yields a valug close to 1. The latter result should not be taken
too sertously but it coustitntes a model of the 25 ~ 2p splitting without rolativistic
quantum mechanics.

We close this section with a remark abouf the g-bosonization (7) of the spherical
angular momentum {J_, J5, J, } leading to su,(2). We may also define an hyperbolic
angular momentum {K_, K3, K} by

X = Gy, Ky= (N + Ny +1) K, =afat (21)

with the property

E_lim) = i —wmjlj + mlli — 1,

Kslim) = (3 + 3), lim) ) (22)
K limy= - m+ 1 +m+ 1]+ 1,m).

The operators K_, K, and K, satisfy the commutation relationships
Ko Kal = 4K, [Ky, K] =~[2K] 23)

and thus span the quantum algebra su,(1,1). There are four other bilinear forms of

the g-bosons a, ai, a_ and ¢ which can be formed in addition to the Js and the
Ks, 23 follows

i} = ~afal Et = gtat D = —a,8, ky=o_a_. (24)
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The operators ks are clearly shift operators for the quantom numbers j and m It
can be proved that the set {ki, kT, kZ, 25} span, together with the sets {J_, Jy,J +}
and {K_, K4, K}, 2 quantum algebra which may be identified to so(3,2) > sp(4,R)
when ¢ goes to 1. The quantum algebra so (3,2) mght be useful for studying the
Wigner-Racah algebra of the group SU (2} as was done in the case ¢ = 1 (Kibler and
Grenet 1980).
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